Factorization
Exercise 10.1.1
1. Factorize the following algebraic expressions:
(a)6x + 3
= 3 (2x + 1)
(b)x² + 4x
= x (x + 4)
(c)12a + 3b
= 3 (4a + b)
(d)12p² + 6q²
= 6 (2p² + q²)
(e)14xy + 7y
= 7y (2x + 1)
(f)x + x³
= x (1 + x2)
(g)12x² + xy + xz
= x (12x + y + z)
(h)x³ + x² + x
= x (x² + x + 1)
(i)2x² - 2x³ + 8x⁴
= 2x² (1 - x + 4x²)
2. Factorize the following by grouping the terms:
(a) ax + bx + ay + by
(ax + ay) + (bx + by)
= a (x + y) + b(x + y)
= (a + b)(x + y)
(b) 2ab + a²b - 2b - ab
= (2ab - 2b) + (a²b -
= 2b (a - 1) + ab(a -1)
= (2b + ab)(a -1)
= b (2 + a)(a -1)
(c) x²y - xy + 2x²y - 2xy
= 3x²y - 3xy
= 3xy (x - 1)
(d) x² + 3x + xy + 3y
= x(x + 3) + y(x + 3)
= (x + 3)(x + y)
(e) 2ab + 3a + 2b² + 3b
= (2ab + 3a) + (2b² + 3b)
= a (2b + 3) + b (2b + 3)
= (2b + 3)(a + b)
(f) 2ab + 3a + 2b² + 3b
= (a – b) + (a² – ab)
= 1 (a – b) + a(a – b)
= (a + 1)(a – b)
(g) 2ab + 3a + 2b² + 3b
= (2a² + 5a) + (6 - a - 15)
= a (2a + 5) - (a + 9)
= (a - 3)(2a + 5)
(h) 2xa – x²a + 2a – ax
= (2xa – ax) + (2a – x²a)
= ax (2 – x) + 2a (1 – x)
= a (2 – x)(x + 1)
(i) x²y + 4xy – xy² – 4y²
= (x²y + 4xy) + (–xy² – 4y²)
= xy (x + 4) – y² (x + 4)
= (x + 4)(xy – y²)
= y (x + 4)(x - y)
(j) 3x (x + y) + 3y (x + y)
= 3x (x + y) + 3y (x + y)
= 3 (x + y)(x + y)
= 3 (x + y)²
(k) 2x² + 3ax + 2ax + 3a²
= (2x² + 2ax) + (3ax + 3a²)
= 2x (x + a) + 3a (x + a)
= (x + a)(2x + 3a)
Exercise 10.1.2
(a) x² - 4
= (x)² - (2)²
= (x - 2)(x + 2)
(b) a² - 4b²
= (a)² - (2b)²
= (a - 2b)(a + 2b)
(c) 9x² - y²
= (3x)² - (y)²
= (3x - y)(3x + y)
(d) 5x² - 20y²
= 5(x² - 4y²)
= 5(x)² - (2y)²
= 5(x - 2y)(x + 2y)
(e) 13a² - 117b²
= 13(a² - 9b²)
= 13(a)² - (3b)²
= 13(a - 3b)(a + 3b)
(f) 25 - (1/9)y²
= (5/3)² - (1/3)y)²
= (5/3 - 1/3y)(5/3 + 1/3y)
(g) 121x² - (1/y²)
= (11x)² - (1/y)²
= (11x - 1/y)(11x + 1/y)
(h) 2p² - 50q²
= 2(p² - 25q²)
= 2(p)² - (5q)²
= 2(p - 5q)(p + 5q)
(i) 72 - 2b²
= 2(36 - b²)
= 2(6)² - (b)²
= 2(6 - b)(6 + b)
(j) 121 - 25y²
= (11)² - (5y)²
= (11 - 5y)(11 + 5y)
(k) 15/a² - 60a²
= 15(1/a² - 4a²)
= 15(1/a - 2a)(1/a + 2a)
= 15(1/a - 2a)(1/a + 2a)
(l) 81 - 64y²
= (9)² - (8y)²
= (9 - 8y)(9 + 8y)
(m) 4x³y - 81xy³
= xy(4x² - 81y²)
= xy(2x)² - (9y)²
= xy(2x - 9y)(2x + 9y)
(n) 4x³y - 81xy³
= xy(4x² - 81y²)
= xy(2x)² - (9y)²
= xy(2x - 9y)(2x + 9y)
(o) 169 - 196z²
= (13)² - (14z)²
= (13 - 14z)(13 + 14z)
(p) ab³ - 9a³b
= ab(a² - 9b²)
= ab(a - 3b)(a + 3b)
(q) 49/121 x² - 64/9 y²
= (7/11 x)² - (8/3 y)²
= (7/11 x - 8/3 y)(7/11 x + 8/3 y)
(r) zx² - zy²
= z(x² - y²)
= z(x - y)(x + y)
(s) (x + 2)² - 4
= (x + 2)² - (2)²
= (x + 2 - 2)(x + 2 + 2)
= (x)(x + 4)
(t) 256 - x²/4
= (16)² - (x/2)²
= (16 - x/2)(16 + x/2)
(u) 1 - 81p²/121q²
= (1)² - (9p/11q)²
= (1 - 9p/11q)(1 + 9p/11q)
(v) 3(x - y)² - 12
= 3(x - y)² - (4)
= 3[(x - y)² - 4]
= 3[(x - y - 2)(x - y + 2)]
(w) 9(x - 1)² - 16(x + 2)²
= 9(x - 1)² - 16(x + 2)²
= 9(x - 1)(x - 1) - 16(x + 2)(x + 2)
= [3(x - 1)]² - [4(x + 2)]²
= (3(x - 1) - 4(x + 2))(3(x - 1) + 4(x + 2))
= (3x - 3 - 4x - 8)(3x - 3 + 4x + 8)
= - (x + 11)(7x + 5)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.