Wednesday, January 15, 2025

Class 8 Maths Solution | Lesson 11 Algebraic Fraction | Curriculum Development Centre (CDC)

Study Note - Unit 1

Algebraic FractionClass 8 Maths Solution | Lesson 11 Algebraic Fraction | Curriculum Development Centre (CDC)

Exercise 11.1

1. Simplify:

(a) 3a² / 4a³

= 3 × a × a / 4 × a × a × a

= 3 / 4a

(b) 5x²y / 10xy²

= (5 × x × x × y) / (10 × x × y × y)

= (5 / 10) × (x / x) × (1 / y)

= x / 2y

(c) (a² + 2ab + b²) / (a² - b²)

= (a + b) (a + b) / (a + b) (a - b)

= (a + b) / (a - b)

(d) (5a³ - 45a) / (4a² - 12a)

= 5a (a² - 9) / 4a (a - 3)

= 5a (a - 3) (a + 3) / (4a(a - 3)

= 5 (a + 3) / 4

(e) (x - 3)³ / (2x - 6)

= (x - 3) (x - 3) (x - 3) / 2(x - 3)

= (x - 3) (x - 3) / 2

= (x - 3)² / 2

(f) (x² + 6x + 9) / (x² - 9)

= (x + 3) (x + 3) / (x + 3) (x - 3)

= (x + 3) / (x - 3)

(g) (a² + 6a + 8) / (a² - 16)

= (a + 2) (a + 4) / (a + 4) (a - 4)

= (a + 2) / (a - 4)

(h) (x² + x - 12) / (x² - x - 6)

= (x + 4) (x - 3) / (x - 3) (x + 2)

= (x + 4) / (x + 2)

(i) (2x + 3)² / (4x² - 9)

= (2x + 3) (2x + 3) / (2x + 3) (2x - 3)

= (2x + 3) / (2x - 3)

(j) (x² + 2x - 15) / (x² + 9x + 20)

= (x + 5) (x - 3) / (x + 5) (x + 4)

= (x - 3) / (x + 4)

(k) (x² + 5x + 6) / (x + 3)²

= (x + 3) (x + 2) / (x + 3) (x + 3)

= (x + 2) / (x + 3)

(l) (x² - 9x + 18) / (x² - 7x + 6)

= (x - 3) (x - 6) / (x - 1) (x - 6)

= (x - 3) / (x - 1)

(m) (x² - 1) / (x² - 6x + 5)

= (x - 1) (x + 1) / (x - 1) (x - 5)

= (x + 1) / (x - 5)

(n) 3xyz / (3x² - 12x)

= 3xyz / 3x (x - 4)

= yz / (x - 4)

(o) (x² - 4x + 4) / (x - 2)

= (x - 2) (x - 2) / (x - 2)

= (x - 2)

Exercise 11.2 1. Simplify:

(a) 2a / y + 3b / y

= (2a + 3b) / y

(b) 5p / r² + 7q / r²

= (5p + 7q)/x²

(c) 5a / 6b - a / 6b

= (5a - a) / 6b = 4a / 6b = 2a / 3b

(d) 3 / (x + 2) - 2 / (x + 2)

= (3 - 2) / (x + 2) = 1 / (x + 2)

(e) (x + 1) / 2 + (x + 2) / 2

= (x + 1) + (x + 2) / 2 = (2x + 3) / 2

(f) (x + y) / (a + 1) - y / (a + 1)

= (x + y - y) / (a + 1) = x / (a + 1)

(g) 6 / (y - 3) - 3y / (y - 3)

= (6 - 3y) / (y -3 )

(h) 3x / (x + 1) + 3 / (x+1)

= (3x + 3) / (x + 1) = 3 (x + 1) / (x + 1) = 3

(i) mn / (m + n) - mn / (m + n)

= mn - mn / (m + n)

= 0

2. Simplify:

(a) (x + 2) / (x + 3) + (x - 2) / (x + 3)

= (x + 2 + x - 2) / (x + 3) = 2x / (x + 3)

(b) (3x + 1) / (x² + 2) - (x + 1) / (x² + 2)

= (3x + 1 - (x + 1) / (x² + 2) = (3x + 1 - x - 1) / (x² + 2) = 2x / (x² + 2)

(c) y - 15) / (y² - 9) + 18 / (y² - 9)

= (y - 15 + 18) / (y² - 9)

= (y + 3) / (y + 3) (y - 3)

= 1 / (y - 3)

(d) (ax² + bx) / (x + a) + c/(x + a)

= (ax² + bx + c/(x + a)

= (ax² + bx + c)/(x + a)

(e) x² - 4x / (x² - 4) - 4 / (x² - 4)

Solution:

= (x² - 4x) / (x² - 4) - 4 / (x² - 4)

= (x² - 4x + 4) / (x² - 4)

= (x² - 2x - 2x + 4) / (x² - 4)

= x (x - 2) - 2 (x - 2) / (x² - 4)

= (x - 2) (x - 2) / (x + 2) (x - 2)

= (x - 2) /(x + 2)

(f) (y² + 3y) / (y + 3) + (5y + 15) / (y + 3)

Solution:

= (y² + 3y + 5y + 15) / (y + 3)

= y (y + 3) + 5 (y + 3) / (y + 3)

= (y + 3) (y + 5) / (y + 3)

= (y + 5)

(g) 5p² / (4 - p) - (35p - 60) / (4 - p)

Solution:

= 5p² - (35p - 60) / (4 - p)

= (5p² - 35p + 60) / (4 - p)

= (5p² - 20p - 15p + 60) / (4 - p)

= 5p (p - 4) - 15 (p - 4) / (4 - p)

= (p - 4) (5p + 15) / (4 - p)

= - (4 + P) (15 - 5p) / - (p + 4)

= 15 - 5p

(h) p⁴ / (p + 3)² + (81 - 18p²) / (p + 3)²

Solution:

= (p⁴ + 81 - 18p²) / (p + 3)²

= (p⁴ - 18p² + 81) / (p + 3)²

= (p⁴ - 9p² - 9p² + 81) / (p + 3)²

= p (p² - 9) - 9 (p² - 9) / (p + 3)²

= (p + 9) (p + 9) (p - 9) (p - 9) / (p + 3) (p + 3)

= (p - 9) (p - 9)

(i) 3x² / (x + y) + (6xy + 3y²) / (x + y)

Solution:

= (3x² + 6xy + 3y²) / (x + y)

= 3 (x² + 2xy + y²) / (x + y)

= 3 (x + y) (x + y) / (x + y)

= 3 (x + y)

(j) (a² + b²) / (a - b)²) - 2ab / (a - b)²

Solution:

= (a² + b²) / (a - b)²) - (2ab) / (a - b)²

= (a² + b² - (2ab) / (a - b)²

= (a - b)² / (a - b)² = 1

(k) m² / (m² + 5m + 6) + 2m / (m² + 5m + 6)

Solution:

= m² / (m² + 5m + 6) + 2m / (m² + 5m + 6)

= m² + 2m / (m² + 5m + 6)

= m (m + 2) / (m + 2) (m + 3)

= m / (m + 3)

(l) x² /(x² - 4x + 3) - 3x / (x² - 4x + 3)

Solution:

= x² / (x² - 4x + 3) - 3x / (x² - 4x + 3)

= (x² - 3x) / (x² - 4x + 3)

= x (x - 3) / (x - 3) (x - 1)

= x / (x - 1)

Exercise 11.3

1. Simplify:

(a) a / 3 + a / 4

Solution:

= a / 3 + a / 4

= (4a + 3a) / 12

= 7a / 12

(b) 2 / x + 3 / 2x

Solution:

= 2 / x + 3 / 2x

= (4 + 3) / 2x

= 7 / 2x

(c) 1 / 2a - 1 / 3a

Solution:

= (3 - 2) / 6a

= 1 / 6a

(d) 3x / 2y - 2x / 3y

Solution:

= (9x - 4x) / 6y

= 5x / 6y

(e) 2 / ab + 3 / 2bc

Solution:

= 2 / ab + 3 / 2bc

= (4c + 3a) / 2abc

(f) 4 / ax - 3 / bx

Solution:

= (4b - 3a) / abx

= (4b - 3a) / abx

(g) 4x + 3x / 7

Solution:

= (28x + 3x) / 7

= 31x / 7

(h) x² / 4 + y² / 3

Solution:

= (3x² + 4y²) / 12

= (3x² + 4y²) / 12

(i) 2 / a - 3 / ab

Solution:

= (2b - 3) / ab

= (2b - 3) / ab

(j) 3 / 7 - 5 / 3y

Solution:

= (9y - 35) / 21y

= (9y - 35) / 21y

(k) x² / y - 4y

Solution:

= (x² - 4y²) / y

= (x - 2y) (x + 2y) / y

(l) x / (2-x) - (2-x) / x

Solution:

= (x² - (2-x)²) / x (2-x)

= (x² - 4 + 4x - x²) / x (2-x)

= (4x - 4) / x (2-x)

= 4 (x - 1) / x (2-x)

2. Simplify:

(a) 2 / (x - y) + 3 / (x+y)

Solution:

= 2 (x + y) + 3 (x - y) / (x - y) (x + y)

= (2x + 2y + 3x - 3y) / (x - y) (x + y)

= (5x - y) / (x-y) (x+y)

(b) 1 / (a-b) - 1 / (a+b)

Solution:

= (a + b) - (a - b) / (a - b) (a + b)

= 2b / (a - b) (a + b)

= 2b / (a² - b²)

(c) 2 / (p - 2q) + 1 / (p+2q)

Solution:

= 2 (p + 2q) + 1 (p - 2q) / (p - 2q) (p + 2q)

= (2p + 4q + p - 2q) / (p - 2q) (p + 2q)

= (3p + 2q) / (p² - 4q²)

(d) x / 2 (x - 2) - 1 / (x - 2)

Solution:

= (x - 2) / 2 (x - 2)

= 1/2

(e) a / (a + b) + b / (a - b)

Solution:

= a (a - b) + b (a + b) / (a + b) (a - b)

= (a² - ab + ab + b²) / (a² - b²)

= (a² + b²) / (a² - b²)

(f) 3 / (x-a) + 4 / (x+a)

Solution:

= 3 (x+a) + 4 (x-a) / (x-a) (x+a)

= (3x + 3a + 4x - 4a) / (x²-a²)

= (7x - a) / (x² - a²)

(g) x / (x² - 1) + 1 / (x - 1)

Solution:

= x / (x - 1) (x + 1) + 1 / (x - 1)

= (x + x + 1) / (x - 1) (x + 1)

= (x + 1) / (x² - 1)

(h) (x + 3) / (x - 5) - (x + 5) / (x - 3)

Solution:

= (x + 3) (x - 3) - (x + 5) (x - 5) / (x - 5)(x - 3)

= (x² - 9 - (x² - 25) / (x² - 8x + 15)

= 16 / (x² - 8x + 15)

(i) (x + 7) / (x - 7) - x /(7 - x)

Solution:

Note: (7 - x) = - (x - 7)

= (x + 7) / (x - 7) + x / (x - 7)

= (x + 7 + x) / (x - 7)

= (2x + 7) / (x - 7)

(j) (2x + 1) / 6 + 2x

Solution:

= (2x + 1) / 6 + (12x) / 6

= (14x + 1) / 6

(k) x / 2 (x + y) - 2/ 3 (x + y)

Solution:

= (3x - 4) / 6(x + y)

(l) 1 / (x + 6) - x / (x + 9)

Solution:

= (x + 9) - x (x + 6) / (x + 6) (x + 9)

= (-x² + 3x + 9) / (x + 6) (x + 9)

(m) (x + 2) / (x² + x) - 3 / (x² - x - 2)

Solution:

= (x + 2) / x (x + 1) - 3 / (x - 1) (x + 2)

= (x + 2) (x - 1) - 3x (x + 1) / x (x + 1)(x - 1)

= (-2x - 2) / x (x + 1) (x - 1)

(n) 1/(x -3) + (3x - 5)/(x² -5x + 6)

Solution:

= 1 / (x - 3) + (3x - 5)/ (x - 3) (x - 2)

= (x - 2) + (3x - 5) / (x - 3) (x - 2)

= (4x - 7) / (x - 3) (x - 2)

(o) (2x - 1) / (x² + 4x) - (x - 2) / (x² + 2x - 8)

Solution:

Note: Factorize denominators: x² + 4x = x (x + 4) and x² + 2x - 8 = (x + 4) (x-2).

= (2x - 1) / x (x + 4) - (x -2) / (x + 4) (x - 2)

= (2x-1) (x-2) - x (x -2) / x (x+4) (x-2)

= (2x² - 4x - x + 2 - x² + 2x) / x (x+4) (x-2)

= (x² - 3x + 2) / x (x+4) (x-2)

= ((x-1) (x-2)) / x (x+4) (x-2)

= (x-1) / x (x+4)

(p) 2a / (a-1) - (a²+3) / (a²-1)

Solution:

2a / (a-1) - (a²+3) / (a²-1)

Note: Factorize denominator: a²-1 = (a-1)(a+1).

= 2a /(a-1) - (a²+3) / (a-1) (a+1)

= 2a (a+1) - (a²+3) / (a-1) (a+1)

= (2a² + 2a - a² - 3) / (a-1) (a+1)

= (a² + 2a - 3) / (a-1) (a+1)

= (a+3) (a-1) / (a-1) (a+1)

= (a+3) / (a+1)

(q) (a²+b²) / (a²-b²) - (a-b) / (a+b)

Solution:

Note: Factorize denominator: a²-b² = (a-b) (a+b).

(a²+b²) / (a²-b²) - (a-b) / (a+b)

= (a²+b²) / (a-b) (a+b) - (a-b) / (a+b)

= (a²+b²) - (a-b)² / (a-b) (a+b)

= {(a²+b² - (a² - 2ab + b²)} / (a-b) (a+b)

= 2ab / (a-b) (a+b)

= 2ab / (a²-b²)

(r) a / (a²+3a+2) - 2 / (a²-1)

Solution:

Note: Factorize denominators: a²+3a+2 = (a+1) (a+2) and a²-1 = (a-1) (a+1).

= a / (a+1) (a+2) - 2/ (a-1) (a+1)

= a (a-1) - 2 (a+2) / (a+1) (a+2) (a-1))

= (a² - a - 2a - 4) / (a+1) (a+2) (a-1)

= (a² - 3a - 4) / (a+1) (a+2) (a-1)

= (a-4) (a+1) / (a+1) (a+2) (a-1)

= (a-4) / (a+2) (a-1)

Exercise 11.4

1. Simplify:

Exercise 11.4

1. Simplify:

(a) a²/b × 2/b

Solution:

= a² / b × 2 / b

= a × a / b × 2 / b

= a × a × 2 / b × b

= 2a² / b²

(b) 3x²/4y² × 4y/3x

Solution:

= 3x² / 4y² × 4y / 3x

= (3 × x × x) / (4 × y × y) × (4 × y) / (3 × x)

= (3 × 4 × x² × y) / (3 × 4 × y² × x)

= x / y

(c) 7a²b/8c × 4c²/14ab²

Solution:

= 7a²b / 8c × 4c² / 14ab²

= (7 × 4 × a² × b × c²) / (8 × 14 × c × a × b²)

= (28a²bc²) / (112abc)

= a / 4b

(d) x-y/x+y × x/y

Solution:

= (x - y) / (x + y) × x / y

= x(x - y) / y(x + y)

= x(x - y) / y(x + y)

(e) a-3/3 × 6/a-3

Solution:

= (a - 3) / 3 × 6 / (a - 3)

= 6(a - 3) / 3(a - 3)

= 6 / 3

= 2

(f) x-3/x+2 × (x+2)²/(x-3)²

Solution:

= (x - 3) / (x + 2) × (x + 2)² / (x - 3)²

= (x - 3) × (x + 2)² / [(x + 2) × (x - 3)²]

= (x + 2) / (x - 3)

2. Simplify:

(a) a²/b² ÷ a/b

Solution:

= a²/b² ÷ a/b

= a²/b² × b/a

= a × a × b / b × b × a

= a / b

(b) 3xy/4ab ÷ 6y/5b

Solution:

= (3xy / 4ab) ÷ (6y / 5b)

= (3xy / 4ab) × (5b / 6y)

= (3 × 5 × x × y × b) / (4 × 6 × a × b × y)

= 15x / 24a

= 5x / 8a

(c) x/7 ÷ x²/14

Solution:

= (x / 7) ÷ (x² / 14)

= (x / 7) × (14 / x²)

= (x × 14) / (7 × x²)

= 14 / (7x)

= 2 / x

(d) 6a²b/7x²y ÷ 6ab²/7y²

Solution:

= (6a²b / 7x²y) ÷ (6ab² / 7y²)

= (6a²b / 7x²y) × (7y² / 6ab²)

= (6 × 7 × a² × b × y²) / (7 × 6 × x² × y × a × b²)

= a × y / (x² × b)

= ay / (x²b)

(e) a² - b² / a ÷ a - b / b

Solution:

= (a² - b²) / a ÷ (a - b) / b

= (a + b) (a - b) / a × b / (a - b)

= (a + b) × b / a

= b (a + b) / a

(f) x² - 1 / y² ÷ x - 1 / y

Solution:

= (x² - 1) / y² ÷ [(x - 1) / y

= (x - 1) (x + 1) / y² × y / (x - 1)

= (x + 1) × y / y²

= (x + 1) / y

3. Simplify:

(a) x² - y² / x + y × x + y / (x - y)²

Solution:

= (x - y) (x + y) / (x + y) × (x + y) / (x - y) (x-y)

= (x + y) / (x - y)

(b) x² + 2xy + y² / x² - y² × x - y / x + y

Solution:

= (x + y)² / (x - y) (x + y) × (x - y) / (x + y)

= (x + y) (x + y) / (x - y) (x + y) × (x - y) / (x + y)

= 1

(c) (x² - 4x + 4) / (3y - xy) × (4x - 12) / (x - 2)

Solution:

= (x² - 4x + 4) / (3y - xy) × (4x - 12) / (x - 2)

= (x - 2)² / y (3 - x) × - 4 (3 - x) / (x - 2)

= (x - 2) (x - 2) / y (3 - x) × - 4 / (x - 2)

= -4 (x - 2) / y

(d) (a² - b²) / (a² + 2a + ab + 2b) × (a + 2) / (a + 3)

Solution:

= (a² - b²) / (a² + 2a + ab + 2b) × (a + 2) / (a + 3)

= (a - b) (a + b) / (a + 2)(a + b) × (a + 2) / (a + 3)

= (a - b)/(a + 3)

(e) (y² + 10y + 24) / (y² + 2y - 8) × (y - 3) / (y + 6)

Solution:

(y² + 10y + 24) / (y² + 2y - 8) × (y - 3) / (y + 6)

= (y + 6) (y + 4) / (y + 4)(y - 2) × (y - 3) / (y + 6)

= (y - 3) / (y - 2)

(f) (x² - 3x - 10) / (x² - 5x + 6) × (bx - 3b) / (cx - 5c)

Solution:

(x² - 3x - 10) / (x² - 5x + 6) × (bx - 3b) / (cx - 5c)

= (x - 5) (x + 2) / (x - 3) (x - 2) × b (x - 3) / c (x - 5)

= b(x + 2)/c(x - 2)

(g) (x² - 11x + 30)/(x² - 7x + 10) × (5x - 10)/(x² - 8x + 12)

Solution:

(x² - 11x + 30)/(x² - 7x + 10) × (5x - 10)/(x² - 8x + 12)

= (x - 5)(x - 6)/ (x - 5)(x - 2) × 5(x - 2)/ (x - 6)(x - 2)

= 5/(x - 2)

(h) (x² - 9)/(x² + 4x) × (x² + 2x - 8)/(x² + x - 6)

Solution:

(x² - 9)/(x² + 4x) × (x² + 2x - 8)/(x² + x - 6)

= (x - 3) (x + 3) / x (x + 4) × (x - 2) (x + 4)/ (x + 3) (x - 2)

= (x - 3) / x

(i) (x² - 5x + 6)/(x² - 6x + 9) × (x² - 2x - 3)/(x² - 3x + 2)

Solution:

(x² - 5x + 6)/(x² - 6x + 9) × (x² - 2x - 3)/(x² - 3x + 2)

= (x - 3)(x - 2)/ (x - 3)(x - 3) × (x - 3)(x + 1)/ (x - 2)(x - 1)

= (x + 1)

Division Problems:

4. Simplify:

(a) (x² - y²)/(x + y) ÷ (x - y)/(x + y)

= (x² - y²)/(x + y) × (x + y)/(x - y)

= (x² - y²)/(x - y)

= (x + y)(x - y)/(x - y)

= x + y

(b) (x² - 5x + 6)/(x² - 9) ÷ (x - 3)/(x + 3)

= (x² - 5x + 6)/(x² - 9) × (x + 3)/(x - 3)

= (x - 2)(x - 3)/(x - 3)(x + 3) × (x + 3)/(x - 3

= (x - 2)/(x - 3)

(c) (x² + 12x + 36)/(x² - 16) ÷ (3x + 18)/(2x² + 8x)

= (x + 6)²/(x - 4)(x + 4) ÷ 3(x + 6)/(2x(x + 4)

= (x + 6)²/(x - 4)(x + 4) × 2x(x + 4)/3(x + 6)

= 2x(x + 6)/ 3(x - 4)

(d) (3x² - 4x - 7)/(3x² - 7x) ÷ (x² - 1)/(x - 4)

= (3x - 7) (x + 1) / x (3x - 7) × (x - 4)/(x + 1) (x - 1)

= (3x - 7) (x + 1) / x (3x - 7) × (x - 4)/(x + 1) (x - 1)

= (x - 4)/ x (x - 1) (e) (x² + 2x - 15)/(x - 2) ÷ 3(x² + 4x - 5)/(x² - 3x + 2)

= (x + 5)(x - 3)/(x - 2) ÷ 3 (x + 5) (x - 1)/ x (x - 2)

= (x + 5)(x - 3) / (x - 2) × (x - 2) (x - 1) / 3 (x + 5) (x - 1))

= (x - 3) / 3

(f) (x² + 12x + 27) / (x² + x - 6) ÷ (x² + 4x - 45)/ 9 (x² - 4x - 5))

= (x + 3) (x + 9) / (x - 2) (x + 3) ÷ (x + 9) (x - 5) / 9 (x - 5) (x + 1))

= (x + 3) (x + 9) / (x - 2) (x + 3) × 9 (x - 5) (x + 1) / (x + 9) (x - 5)

= 9 (x + 1) / (x - 2)

(g) (xy - x + 2y - 2) / (3y + 2x + xy + 6) ÷ (xy - x + 5y - 5) / (x² + 8x + 15)

= x(y - 1) + 2 (y - 1) / x (y + 3) + 2 (y + 3) ÷ x(y - 1) + 5 (y - 1) / (x + 5) (x + 3)

= (y - 1) (x + 2) / (y + 2) (x + 3) ÷ (y - 1) (x + 5) /(x + 5) (x + 3)

= (y - 1) (x + 2) / (y + 2) (x + 2) x (x + 5) (x + 3) / (y - 1) (x + 5)

= (x + 2) / (y + 2)

(h) (y² + 4y - 12) / (y² - 5y + 6) ÷ (y² + 3y - 18) / (y² - 9)

= (y + 6) (y - 2) / (y - 2) (y - 3) ÷ (y + 6) (y - 3) / (y + 3) (y - 3)

= (y + 6) (y - 2) / (y - 2) (y - 3) x (y + 3) (y - 3) / (y + 6) (y - 3)

= (y + 3) / (y - 3)

(i) (x² - 8x + 15) / (x² - 14x + 45) ÷ (x² - 2x - 15) / (x² - 8x - 9)

= (x - 3)(x - 5)/(x - 9)(x - 5) ÷ (x - 5) (x + 3) / (x - 9) (x + 1)

= (x - 3)(x - 5)/(x - 9)(x - 5) x (x - 9) (x + 1) / (x - 5) (x + 3)

= (x - 3) (x + 1) / (x - 5) (x + 3)

(j) (a² + 3a + 2) / (a² - 4a - 12) ÷ (a² - a - 6) / (a² - 9a + 18)

= (a + 1) (a + 2) / (a - 6) (a + 2) ÷ (a - 3) (a + 2) / (a - 6) (a - 3)

= (a + 1) (a + 2) / (a - 6) (a + 2) x (a - 6) (a - 3) / (a - 3) (a + 2)

= (a + 1)/(a + 2)

5. Simplify: 
  (a)  2x  / 5y  × (2y / 5 ÷ y / 3)

= 2x / 5y × 2y / 5 × 3 / y)

=  2x x  2y x  3 / 5y x  5y

=  12x / 25y

(b) x / (x-1) - 1 / (x+1) ÷ (x-1) / (x²-1)

=  x (x + 1) - (x - 1) / (x - 1) (x + 1) ÷ (x - 1) / (x - 1) (x + 1)

= (x² + x - x + 1) / (x - 1) (x + 1) ÷ (x - 1) / (x - 1) (x + 1)

= (x² + 1) / (x - 1) (x + 1) × (x - 1) (x + 1) / (x - 1)

= (x² + 1) / (x - 1)

(c) (3x / (x-1) × 1 / (x+1) ÷ 3 / (x²-1)

= 3x / (x - 1) (x + 1) ÷ 3 / (x - 1) (x + 1)

= 3x / (x - 1) (x + 1) x (x - 1) (x + 1) / 3

= x

(d) (x - 4) / (x+4) × (x-3) / (x+3) ÷ (x²-7x+12) / (x²+7x+12)

= (x - 4) (x - 3) / (x + 4) (x + 3) ÷ (x - 3) (x - 4) / (x + 4)(x + 3)

= (x - 4)(x - 3) / (x + 4) (x + 3) x (x + 4) (x + 3) / (x - 3) (x - 4)

= 1

(e) (a + b) / (a - b) - (a - b) / (a + b) × (a² - b²) / 4ab

= (a + b) (a + b) - (a - b) (a - b) / (a - b) (a + b) × (a + b) (a - b) / 4ab

= a² + 2ab + b² - a² + 2ab - b²/ 4ab

= 4ab / 4ab = 1

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

close