Saturday, April 26, 2025

Class 8 Readmore Maths Solution | Chapter 2 WHOLE NUMBERS, BINARY, QUINARY

Class 8 Readmore Maths Solution | Chapter 2 WHOLE NUMBERS, BINARY, QUINARY

Chapter 2 WHOLE NUMBERS

BINARY NUMBER SYSTEM

Quinary NUMBER SYSTEM

1. Define the following:

(a) Decimal Number System (Base-10).

The decimal number system is a base-10 numbering system that uses ten distinct digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Each position in a decimal number represents a power of 10.

(b) Binary Number System (Base-2).

The binary number system is a base-2 numbering system that uses only two digits: 0 and 1. Each position in a binary number represents a power of 2.

2. What are the digits used in binary number?

The digits used in the binary number system are 0 and 1.

3. How many digits are used in decimal system?

The decimal system uses 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

4. Write the binary number equal to ( 1 x 2² + 1 x 2¹ + 1 x 2⁰ ).

Solution:

1 x 2² + 1 x 2¹ + 1 x 2⁰

= 111₂

5. What is the binary representation of the decimal number 3?

3 = 2 + 1 = 1 x 2¹ + 1 x 2⁰ = 11₂

6. Define the Quinary Number System (Base-5).

The quinary number system is a base-5 numbering system that uses five distinct digits: 0, 1, 2, 3, and 4. Each position in a quinary number represents a power of 5.

7. How many digits are used in quinary system?

The quinary system uses 5 digits: 0, 1, 2, 3, and 4.

8. Write the quinary number equal to ( 4 x 5³ + 3 x 5² + 0 x 5¹ + 2 x 5⁰ ).

Solution:

4 x 5³ + 3 x 5² + 0 x 5¹ + 2 x 5⁰

= 4302₅

9. What is the quinary representation of the decimal number 6?

= 5 + 1

= 1 x 5¹ + 1 x 5⁰

= 11₅

The quinary representation is 11.

SOLVE

1. Write the following decimal numbers in expanded form:

(a) 242

Solution:

= 200 + 40 + 2

= 2×10² + 4×10¹ + 2×10⁰

(b) 3941

Solution:

= 3000 + 900 + 40 + 1

= 3×10³ + 9×10² + 4×10¹ + 1×10⁰

(c) 4346

Solution:

= 4000 + 300 + 40 + 6

= 4×10³ + 3×10² + 4×10¹ + 6×10⁰

(d) 50391

Solution:

= 50000 + 0 + 300 + 90 + 1

= 5×10⁴ + 0×10³ + 3×10² + 9×10¹ + 1×10⁰

(e) 46921

Solution:

= 40000 + 6000 + 900 + 20 + 1

= 4×10⁴ + 6×10³ + 9×10² + 2×10¹ + 1×10⁰

(f) 792311

Solution:

= 700000 + 90000 + 2000 + 300 + 10 + 1

= 7×10⁵ + 9×10⁴ + 2×10³ + 3×10² + 1×10¹ + 1×10⁰

(g) 246321

Solution:

= 200000 + 40000 + 6000 + 300 + 20 + 1

= 2×10⁵ + 4×10⁴ + 6×10³ + 3×10² + 2×10¹ + 1×10⁰

(h) 5913217

Solution:

= 5000000 + 900000 + 10000 + 3000 + 200 + 10 + 7

= 5×10⁶ + 9×10⁵ + 1×10⁴ + 3×10³ + 2×10² + 1×10¹ + 7×10⁰

2. Convert the following in index form of 2:

(a) 64

Solution:

64 = 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20

(b) 90

Solution:

90 = 1 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

(c) 104

Solution:

104 = 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20

(d) 120

Solution:

120 = 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20

(e) 240

Solution:

240 = 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20

(f) 300

Solution:

300 = 1 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20

(g) 360

Solution:

360 = 1 × 28 + 0 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20

(h) 516

Solution:

516 = 1 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

3. Convert the following in index form of 5:

(a) 50

Solution:

50 = 2 × 52 + 0 × 51 + 0 × 50

(b) 65

Solution:

65 = 2 × 52 + 3 × 51 + 0 × 50

(c) 95

Solution:

95 = 3 × 52 + 4 × 51 + 0 × 50

(d) 120

Solution:

120 = 4 × 52 + 4 × 51 + 0 × 50

(e) 165

Solution:

165 = 1 × 53 + 0 × 52 + 3 × 51 + 0 × 50

(f) 204

Solution:

204 = 1 × 53 + 3 × 52 + 0 × 51 + 4 × 50

(g) 640

Solution:

640 = 1 × 54 + 0 × 53 + 0 × 52 + 3 × 51 + 0 × 50

(h) 1250

Solution:

1250 = 2 × 54 + 0 × 53 + 0 × 52 + 0 × 51 + 0 × 50

4. Show the following binary number into a place value chart.

(e) 100011₂

Solution:

1 = 1 × 2⁰ = 1

1 = 1 × 2¹ = 2

0 = 0 × 2² = 0

0 = 0 × 2³ = 0

0 = 0 × 2⁴ = 0

1 = 1 × 2⁵ = 32

Decimal Equivalent = 1 + 2 + 0 + 0 + 0 + 32 = 35

(f) 100110₂

Solution:

0 = 0 × 2⁰ = 0

1 = 1 × 2¹ = 2

1 = 1 × 2² = 4

0 = 0 × 2³ = 0

0 = 0 × 2⁴ = 0

1 = 1 × 2⁵ = 32

Decimal Equivalent = 0 + 2 + 4 + 0 + 0 + 32 = 38

(g) 101000₂

Solution:

0 = 0 × 2⁰ = 0

0 = 0 × 2¹ = 0

0 = 0 × 2² = 0

1 = 1 × 2³ = 8

0 = 0 × 2⁴ = 0

1 = 1 × 2⁵ = 32

Decimal Equivalent = 0 + 0 + 0 + 8 + 0 + 32 = 40

(h) 101010₂

Solution:

0 = 0 × 2⁰ = 0

1 = 1 × 2¹ = 2

0 = 0 × 2² = 0

1 = 1 × 2³ = 8

0 = 0 × 2⁴ = 0

1 = 1 × 2⁵ = 32

Decimal Equivalent = 0 + 2 + 0 + 8 + 0 + 32 = 42

(i) 101100₂

Solution:

0 = 0 × 2⁰ = 0

0 = 0 × 2¹ = 0

1 = 1 × 2² = 4

1 = 1 × 2³ = 8

0 = 0 × 2⁴ = 0

1 = 1 × 2⁵ = 32

Decimal Equivalent = 0 + 0 + 4 + 8 + 0 + 32 = 44

(j) 101101₂

Solution:

1 = 1 × 2⁰ = 1

0 = 0 × 2¹ = 0

1 = 1 × 2² = 4

1 = 1 × 2³ = 8

0 = 0 × 2⁴ = 0

1 = 1 × 2⁵ = 32

Decimal Equivalent = 1 + 0 + 4 + 8 + 0 + 32 = 45

(k) 110000₂

Solution:

0 = 0 × 2⁰ = 0

0 = 0 × 2¹ = 0

0 = 0 × 2² = 0

0 = 0 × 2³ = 0

1 = 1 × 2⁴ = 16

1 = 1 × 2⁵ = 32

Decimal Equivalent = 0 + 0 + 0 + 0 + 16 + 32 = 48

(ζ) 110010₂

Solution:

0 = 0 × 2⁰ = 0

1 = 1 × 2¹ = 2

0 = 0 × 2² = 0

0 = 0 × 2³ = 0

1 = 1 × 2⁴ = 16

1 = 1 × 2⁵ = 32

Decimal Equivalent = 0 + 2 + 0 + 0 + 16 + 32 = 50

(m) 110110₂

Solution:

0 = 0 × 2⁰ = 0

1 = 1 × 2¹ = 2

1 = 1 × 2² = 4

0 = 0 × 2³ = 0

1 = 1 × 2⁴ = 16

1 = 1 × 2⁵ = 32

Decimal Equivalent = 0 + 2 + 4 + 0 + 16 + 32 = 54

(n) 111000₂

Solution:

0 = 0 × 2⁰ = 0

0 = 0 × 2¹ = 0

0 = 0 × 2² = 0

1 = 1 × 2³ = 8

1 = 1 × 2⁴ = 16

1 = 1 × 2⁵ = 32

Decimal Equivalent = 0 + 0 + 0 + 8 + 16 + 32 = 56

(o) 111100₂

Solution:

0 = 0 × 2⁰ = 0

0 = 0 × 2¹ = 0

1 = 1 × 2² = 4

1 = 1 × 2³ = 8

1 = 1 × 2⁴ = 16

1 = 1 × 2⁵ = 32

Decimal Equivalent = 0 + 0 + 4 + 8 + 16 + 32 = 60

(p) 111110₂

Solution:

0 = 0 × 2⁰ = 0

1 = 1 × 2¹ = 2

1 = 1 × 2² = 4

1 = 1 × 2³ = 8

1 = 1 × 2⁴ = 16

1 = 1 × 2⁵ = 32

Decimal Equivalent = 0 + 2 + 4 + 8 + 16 + 32 = 62

5. Convert the following binary numbers into decimal number system:

(a) 11001₂

Solution:

11001₂ = 1×2⁴ + 1×2³ + 0×2² + 0×2¹ + 1×2⁰

= 16 + 8 + 0 + 0 + 1

= 25

∴ 11001₂ = 25

(b) 11100₂

Solution:

11100₂ = 1×2⁴ + 1×2³ + 1×2² + 0×2¹ + 0×2⁰

= 16 + 8 + 4 + 0 + 0

= 28

∴ 11100₂ = 28

(c) 11101₂

Solution:

11101₂

= 1×2⁴ + 1×2³ + 1×2² + 0×2¹ + 1×2⁰

= 16 + 8 + 4 + 0 + 1

= 29

∴ 11101₂ = 29

(d) 100000₂

Solution:

100000₂

= 1×2⁵ + 0×2⁴ + 0×2³ + 0×2² + 0×2¹ + 0×2⁰

= 32 + 0 + 0 + 0 + 0 + 0

= 32

∴ 100000₂ = 32

(e) 100011₂

Solution:

100011₂

= 1×2⁵ + 0×2⁴ + 0×2³ + 0×2² + 1×2¹ + 1×2⁰

= 32 + 0 + 0 + 0 + 2 + 1

= 35

∴ 100011₂ = 35

(f) 100110₂

Solution:

100110₂

= 1×2⁵ + 0×2⁴ + 0×2³ + 1×2² + 1×2¹ + 0×2⁰

= 32 + 0 + 0 + 4 + 2 + 0

= 38

∴ 100110₂ = 38

(g) 101000₂

Solution:

101000₂

= 1×2⁵ + 0×2⁴ + 1×2³ + 0×2² + 0×2¹ + 0×2⁰

= 32 + 0 + 8 + 0 + 0 + 0

= 40

∴ 101000₂ = 40

(h) 101010₂

Solution:

101010₂

= 1×2⁵ + 0×2⁴ + 1×2³ + 0×2² + 1×2¹ + 0×2⁰

= 32 + 0 + 8 + 0 + 2 + 0

= 42

∴ 101010₂ = 42

(i) 101100₂

Solution:

101100₂

= 1×2⁵ + 0×2⁴ + 1×2³ + 1×2² + 0×2¹ + 0×2⁰

= 32 + 0 + 8 + 4 + 0 + 0

= 44

∴ 101100₂ = 44

(j) 101101₂

Solution:

101101₂

= 1×2⁵ + 0×2⁴ + 1×2³ + 1×2² + 0×2¹ + 1×2⁰

= 32 + 0 + 8 + 4 + 0 + 1

= 45

∴ 101101₂ = 45

(k) 110000₂

Solution:

110000₂

= 1×2⁵ + 1×2⁴ + 0×2³ + 0×2² + 0×2¹ + 0×2⁰

= 32 + 16 + 0 + 0 + 0 + 0

= 48

∴ 110000₂ = 48

(l) 110010₂

Solution:

110010₂

= 1×2⁵ + 1×2⁴ + 0×2³ + 0×2² + 1×2¹ + 0×2⁰

= 32 + 16 + 0 + 0 + 2 + 0

= 50

∴ 110010₂ = 50

(m) 110110₂

Solution:

110110₂

= 1×2⁵ + 1×2⁴ + 0×2³ + 1×2² + 1×2¹ + 0×2⁰

= 32 + 16 + 0 + 4 + 2 + 0

= 54

∴ 110110₂ = 54

(n) 111000₂

Solution:

111000₂

= 1×2⁵ + 1×2⁴ + 1×2³ + 0×2² + 0×2¹ + 0×2⁰

= 32 + 16 + 8 + 0 + 0 + 0

= 56

∴ 111000₂ = 56

(o) 111100₂

Solution:

111100₂

= 1×2⁵ + 1×2⁴ + 1×2³ + 1×2² + 0×2¹ + 0×2⁰

= 32 + 16 + 8 + 4 + 0 + 0

= 60

∴ 111100₂ = 60

(p) 111110₂

Solution:

111110₂

= 1×2⁵ + 1×2⁴ + 1×2³ + 1×2² + 1×2¹ + 0×2⁰

= 32 + 16 + 8 + 4 + 2 + 0

= 62

∴ 111110₂ = 62

6. Convert the following decimal numbers into binary number system:

(a) 15

Solution:

Therefore, 15 = 1111₂

(b) 18

Solution:

Therefore, 18 = 10010₂

(c) 21

Solution:

Therefore, 21 = 10101₂

(d) 24

Solution:

Therefore, 24 = 11000₂

(e) 26

Solution:

Therefore, 26 = 11010₂

(f) 30

Solution:

Therefore, 30 = 11110₂

(g) 33

Solution:

Therefore, 33 = 100001₂

(h) 36

Solution:

Therefore, 36 = 100100₂

(i) 39

Solution:

Therefore, 39 = 100111₂

(j) 41

Solution:

Therefore, 41 = 101001₂

(k) 43

Solution:

Therefore, 43 = 101011₂

(l) 46

Solution:

Therefore, 46 = 101110₂

(m) 49

Solution:

Therefore, 49 = 110001₂

(n) 52

Solution:

Therefore, 52 = 110100₂









(o) 64

Solution:

Therefore, 64 = 1000000₂

7. Find the value of A.

(a) For what value of A, the binary number A1101₂ has value 29?

Solution:

A1101₂ = A×24 + 1×23 + 1×22 + 0×21 + 1×20

= A×16 + 1×8 + 1×4 + 0×2 + 1×1

= 16A + 8 + 4 + 0 + 1

= 16A + 13

According to the question,

A1101₂ = 29

or, 16A + 13 = 29

or, 16A = 29 - 13

or, 16A = 16

or, A = 16/16 = 1

Therefore, A = 1

(b) For what value of A, the binary number 10A101₂ has value 45?

Solution:

10A101₂ = 1×25 + 0×24 + A×23 + 1×22 + 0×21 + 1×20

= 1×32 + 0×16 + A×8 + 1×4 + 0×2 + 1×1

= 32 + 0 + 8A + 4 + 0 + 1

= 8A + 37

According to the question,

10A101₂ = 45

or, 8A + 37 = 45

or, 8A = 45 - 37

or, 8A = 8

or, A = 8 / 8 = 1

Therefore, A = 1.

(c) For what value of A, the binary number 1A001₂ has value 25?

Solution:

1A001₂ = 1×24 + A×23 + 0×22 + 0×21 + 1×20

= 1×16 + A×8 + 0×4 + 0×2 + 1×1

= 16 + 8A + 0 + 0 + 1

= 17 + 8A

According to the question,

17 + 8A = 25

or, 8A = 25 - 17

or, 8A = 8

or, A = 8 / 8 = 1

Therefore, A = 1

(d) For what value of A, the binary number 110A11₂ has value 51?

Solution:

110A11₂ = 1×25 + 1×24 + 0×23 + A×22 + 1×21 + 1×20

= 1×32 + 1×16 + 0×8 + A×4 + 1×2 + 1×1

= 32 + 16 + 0 + 4A + 2 + 1

= 4A + 51

According to the question,

or, 4A = 51 - 51

or, 4A = 0

or, A = 0

Therefore, A = 0

8. If the lamp which is glowing on indicates 1 and the lamp which is glowing off indicates 0 of the binary system, write the binary numbers indicated by the following lamps and express them in decimal system.

(a) 110₂

Solution:

110₂ = 1×22 + 1×21 + 0×20

= 4 + 2 + 0

= 6

∴ 110₂ = 6

(b) 111₂

Solution:

111₂ = 1×22 + 1×21 + 1×20

= 4 + 2 + 1

= 7

∴ 111₂ = 7

(c) 100₂

Solution:

100₂ = 1×22 + 0×21 + 0×20

= 4 + 0 + 0

= 4

∴ 100₂ = 4

(d) 1100₂

Solution:

1100₂ = 1×23 + 1×22 + 0×21 + 0×20

= 8 + 4 + 0 + 0

= 12

∴ 1100₂ = 12

(e) 1110₂

Solution:

1110₂ = 1×23 + 1×22 + 1×21 + 0×20

= 8 + 4 + 2 + 0

= 14

∴ 1110₂ = 14

(f) 1111₂

Solution:

1111₂ = 1×23 + 1×22 + 1×21 + 1×20

= 8 + 4 + 2 + 1

= 15

∴ 1111₂ = 15

9. Convert the following decimal numbers into quinary numbers.

(a) 12

Solution:

Therefore, 12 = 22₅

(b) 15

Solution:

Therefore, 15 = 30₅

(c) 18

Solution:

Therefore, 18 = 33₅

(d) 20

Solution:

Therefore, 20 = 40₅

(e) 25

Solution:

Therefore, 25 = 100₅

(f) 30

Solution:

Therefore, 30 = 110₅

(g) 32

Solution:

Therefore, 32 = 112₅

(h) 44

Solution:

Therefore, 44 = 134₅

(i) 48

Solution:

Therefore, 48 = 143₅

(j) 50

Solution:

Therefore, 50 = 200₅

(k) 64

Solution:

Therefore, 64 = 224₅

(l) 72

Solution:

Therefore, 72 = 242₅

(m) 85

Solution:

Therefore, 85 = 320₅

(n) 90

Solution:

Therefore, 90 = 330₅

(o) 120

Solution:

Therefore, 120 = 440₅

(p) 140

Solution:

Therefore, 140 = 1030₅

(q) 150

Solution:

Therefore, 150 = 1100₅

Therefore, 150 = 1100₅

(r) 188

Solution:

Therefore, 188 = 1223₅

(s) 194

Solution:

Therefore, 194 = 1234₅

(t) 210

Solution:

Therefore, 210 = 1320₅

10. Convert the following quinary numbers into decimal numbers:

(a) 23₅

Solution:

23₅

= 2 × 5¹ + 3 × 5⁰

= 2 × 5 + 3 × 1 = 10 + 3 = 13

(b) 31₅

Solution:

31₅

= 3 × 5¹ + 1 × 5⁰

= 3 × 5 + 1 × 1 = 15 + 1 = 16

(c) 34₅

Solution:

34₅

= 3 × 5¹ + 4 × 5⁰

= 3 × 5 + 4 × 1 = 15 + 4 = 19

(d) 41₅

Solution:

41₅

= 4 × 5¹ + 1 × 5⁰

= 4 × 5 + 1 × 1 = 20 + 1 = 21

(e) 101₅

Solution:

101₅

= 1 × 5² + 0 × 5¹ + 1 × 5⁰

= 1 × 25 + 0 × 5 + 1 × 1 = 25 + 0 + 1 = 26

(f) 111₅

Solution:

111₅

= 1 × 5² + 1 × 5¹ + 1 × 5⁰

= 1 × 25 + 1 × 5 + 1 × 1 = 25 + 5 + 1 = 31

(g) 113₅

Solution:

113₅

= 1 × 5² + 1 × 5¹ + 3 × 5⁰

= 1 × 25 + 1 × 5 + 3 × 1 = 25 + 5 + 3 = 33

(h) 140₅

Solution:

140₅

= 1 × 5² + 4 × 5¹ + 0 × 5⁰

= 1 × 25 + 4 × 5 + 0 × 1 = 25 + 20 + 0 = 45

(i) 144₅

Solution:

144₅

= 1 × 5² + 4 × 5¹ + 4 × 5⁰

= 1 × 25 + 4 × 5 + 4 × 1 = 25 + 20 + 4 = 49

(j) 201₅

Solution:

201₅

= 2 × 5² + 0 × 5¹ + 1 × 5⁰

= 2 × 25 + 0 × 5 + 1 × 1 = 50 + 0 + 1 = 51

(k) 230₅

Solution:

230₅

= 2 × 5² + 3 × 5¹ + 0 × 5⁰

= 2 × 25 + 3 × 5 + 0 × 1 = 50 + 15 + 0 = 65

(l) 243₅

Solution:

243₅

= 2 × 5² + 4 × 5¹ + 3 × 5⁰

= 2 × 25 + 4 × 5 + 3 × 1 = 50 + 20 + 3 = 73

(m) 321₅

Solution:

321₅

= 3 × 5² + 2 × 5¹ + 1 × 5⁰

= 3 × 25 + 2 × 5 + 1 × 1 = 75 + 10 + 1 = 86

(n) 331₅

Solution:

331₅

= 3 × 5² + 3 × 5¹ + 1 × 5⁰

= 3 × 25 + 3 × 5 + 1 × 1 = 75 + 15 + 1 = 91

(o) 441₅

Solution:

441₅

= 4 × 5² + 4 × 5¹ + 1 × 5⁰

= 4 × 25 + 4 × 5 + 1 × 1 = 100 + 20 + 1 = 121

(p) 1031₅

Solution:

1031₅

= 1 × 5³ + 0 × 5² + 3 × 5¹ + 1 × 5⁰

= 1 × 125 + 0 × 25 + 3 × 5 + 1 × 1 = 125 + 0 + 15 + 1 = 141

(q) 1101₅

Solution:

1101₅

= 1 × 5³ + 1 × 5² + 0 × 5¹ + 1 × 5⁰

= 1 × 125 + 1 × 25 + 0 × 5 + 1 × 1 = 125 + 25 + 0 + 1 = 151

(r) 1224₅

Solution:

1224₅

= 1 × 5³ + 2 × 5² + 2 × 5¹ + 4 × 5⁰

= 1 × 125 + 2 × 25 + 2 × 5 + 4 × 1 = 125 + 50 + 10 + 4 = 189

(s) 1240₅

Solution:

1240₅

= 1 × 5³ + 2 × 5² + 4 × 5¹ + 0 × 5⁰

= 1 × 125 + 2 × 25 + 4 × 5 + 0 × 1 = 125 + 50 + 20 + 0 = 195

(t) 1321₅

Solution:

1321₅

= 1 × 5³ + 3 × 5² + 2 × 5¹ + 1 × 5⁰

= 1 × 125 + 3 × 25 + 2 × 5 + 1 × 1 = 125 + 75 + 10 + 1 = 211

11. Compare the numbers in different number systems:

(a) 100₅ and 11000₂

Solution:

100₅

= 1×52 + 0×51 + 0×50

= 25 + 0 + 0

= 25

Now,

11000₂

= 1×24 + 1×23 + 0×22 + 0×21 + 0×20

= 16 + 8 + 0 + 0 + 0

= 24

Therefore, 100₅ is greater than 11000₂ or 100₅ > 11000₂

(b) 101110₂ and 110₅

Solution:

101110₂

= 1×25 + 0×24 + 1×23 + 1×22 + 1×21 + 0×20

= 32 + 0 + 8 + 4 + 2 + 0

= 46

Now,

110₅

= 1×52 + 1×51 + 0×50

= 25 + 5 + 0

= 30

Therefore, 101110₂ is greater than 110₅ or 101110₂ > 110₅

(c) 1224₅ and 11001₂

Solution:

1224₅

= 1×53 + 2×52 + 2×51 + 4×50

= 125 + 50 + 10 + 4

= 189

Now,

11001₂

= 1×24 + 1×23 + 0×22 + 0×21 + 1×20

= 16 + 8 + 0 + 0 + 1

= 25

Therefore, 1224₅ is greater than 11001₂ or 1224₅ > 11001₂

(d) 101101₂ and 321₅

Solution:

101101₂

= 1×25 + 0×24 + 1×23 + 1×22 + 0×21 + 1×20

= 32 + 0 + 8 + 4 + 0 + 1

= 45

Now,

321₅

= 3×52 + 2×51 + 1×50

= 75 + 10 + 1

= 86

Therefore, 321₅ is greater than 101101₂ or 321₅ > 101101₂

(e) 1321₅ and 111110₂

Solution:

1321₅

= 1×53 + 3×52 + 2×51 + 1×50

= 125 + 75 + 10 + 1

= 211

Now,

111110₂

= 1×25 + 1×24 + 1×23 + 1×22 + 1×21 + 0×20

= 32 + 16 + 8 + 4 + 2 + 0

= 62

Therefore, 1321₅ is greater than 111110₂ or 1321₅ > 111110₂

(f) 101010₂ and 113₅

Solution:

101010₂

= 1×25 + 0×24 + 1×23 + 0×22 + 1×21 + 0×20

= 32 + 0 + 8 + 0 + 2 + 0

= 42

Now,

113₅

= 1×52 + 1×51 + 3×50

= 25 + 5 + 3

= 33

Therefore, 101010₂ is greater than 113₅ or 101010₂ > 113₅

12. Find the differences between the numbers:

(a) 100₅ and 11000₂

100₅

= 1×52 + 0×51 + 0×50

= 25 + 0 + 0

= 25

Now,

11000₂

= 1×24 + 1×23 + 0×22 + 0×21 + 0×20

= 16 + 8 + 0 + 0 + 0

= 24

Hence, the difference = 25 - 24 = 1

(b) 101110₂ and 110₅

101110₂

= 1×25 + 0×24 + 1×23 + 1×22 + 1×21 + 0×20

= 32 + 0 + 8 + 4 + 2 + 0

= 46

Now,

110₅

= 1×52 + 1×51 + 0×50

= 25 + 5 + 0

= 30

Hence, the difference = 46 - 30 = 16

(c) 1224₅ and 11001₂

1224₅

= 1×53 + 2×52 + 2×51 + 4×50

= 125 + 50 + 10 + 4

= 189

Now,

11001₂

= 1×24 + 1×23 + 0×22 + 0×21 + 1×20

= 16 + 8 + 0 + 0 + 1

= 25

Hence, the difference = 189 - 25 = 164

(d) 321₅ and 101101₂

321₅

= 3×52 + 2×51 + 1×50

= 75 + 10 + 1

= 86

Now,

101101₂

= 1×25 + 0×24 + 1×23 + 1×22 + 0×21 + 1×20

= 32 + 0 + 8 + 4 + 0 + 1

= 45

Hence, the difference = 86 - 45 = 41

(e) 1321₅ and 111110₂

1321₅

= 1×53 + 3×52 + 2×51 + 1×50

= 125 + 75 + 10 + 1

= 211

Now,

111110₂

= 1×25 + 1×24 + 1×23 + 1×22 + 1×21 + 0×20

= 32 + 16 + 8 + 4 + 2 + 0

= 62

Hence, the difference = 211 - 62 = 149

(f) 101010₂ and 113₅

101010₂

= 1×25 + 0×24 + 1×23 + 0×22 + 1×21 + 0×20

= 32 + 0 + 8 + 0 + 2 + 0

= 42

Now,

113₅

= 1×52 + 1×51 + 3×50

= 25 + 5 + 3

= 33

Hence, the difference = 42 - 33 = 9

No comments:

Post a Comment

close